

Олимпиада Юношеской математической школы II тур, 18 декабря 2023 года 11 класс. Основная аудитория

Сюжет 1.

Дан остроугольный неравнобедренный треугольник ABC. На меньшей дуге BC его описанной окружности выбирается переменная точка D. Точка D' симметрична точке D относительно прямой BC. Луч CD' пересекает отрезок AB в точке E. Луч BD' пересекает отрезок AC в точке F.

- **1.1.** Докажите, что окружность ω , описанная около треугольника D'EF проходит через фиксированную точку.
- **1.2.** Известно, что в положении $D=D_1$ центр окружности ω лежит на отрезке AB, а в положении $D=D_2$ на стороне AC. Отрезки BD_2 и CD_1 пересекаются в точке X. Докажите, что прямые AX и BC перпендикулярны.

Сюжет 2.

Пусть f(a,b) — это количество способов пронумеровать клетки доски $a \times b$ номерами от 1 до ab так, что каждая следующая находится в одной строке или столбце хотя бы с одной из предыдущих. «Найти» означает выписать ответ в замкнутом виде.

- **2.1.** Найдите f(3,2).
- **2.2.** Покажите, что $f(a, a) \leq 100 \frac{(a^2)!}{2^a}$.

Сюжет 3.

P — некий полином с целыми коэффициентами, A и M — целые числа. Построим последовательность a_n , где $a_1=A$, и $a_{n+1}=P(a_n)$ и пусть r_n — остаток от деления a_n на M.

- **3.1.** Пусть $P(x) = x^2 + x + 1$, A = 1, $M = 3^{2022}$. Докажите, что период последовательности r_n (то есть, такое наименьшее t, что $r_{n+t} = r_n$ при достаточно больших n) равен 2.
- **3.2.** Найдите длину предпериода той же последовательности (то есть такое наибольшее n, что $a_{n+t} \neq a_n$, где t период).

Олимпиада Юношеской математической школы II тур, 18 декабря 2023 года 11 класс. Выводная аудитория

Сюжет 1.

Дан остроугольный неравнобедренный треугольник ABC. На меньшей дуге BC его описанной окружности выбирается переменная точка D. Точка D' симметрична точке D относительно прямой BC. Луч CD' пересекает отрезок AB в точке E. Луч BD' пересекает отрезок AC в точке F.

- **1.3.** Окружность ω вторично пересекает окружность ABC в точке G. Докажите, что прямая D'G проходит через фиксированную точку.
- **1.4.** Докажите, что если $\angle A=60^\circ$, то расстояние от вершины A до точки Торричелли треугольника ABC не превосходит диаметра окружности ω (при любом положении точки D). Напомним, что точкой Торричелли треугольника ABC называется такая точка T, что $\angle ATB=\angle BTC=\angle CTA=120^\circ$.

Сюжет 2.

Пусть f(a,b) — это количество способов пронумеровать клетки доски $a \times b$ номерами от 1 до ab так, что каждая следующая находится в одной строке или столбце хотя бы с одной из предыдущих. «Найти» означает выписать ответ в замкнутом виде.

- **2.3.** Докажите, что $f(a,a) \geqslant \frac{(a^2)!}{100 \cdot 8^a}$.
- **2.4.** Найдите f(a, 2).

Сюжет 3.

P— некий полином с целыми коэффициентами, A и M— целые числа. Построим последовательность a_n , где $a_1 = A$, и $a_{n+1} = P(a_n)$ и пусть r_n — остаток от деления a_n на M.

- **3.3.** Назовем полином *стабильным по модулю* M, если существует B, такое что для любого A найдется k, для которого $r_k = B$. Докажите, что полином $f = x^3 x^2 2$ нестабилен по модулю M, если M является квадратом нечётного числа.
- **3.4.** Докажите, что многочлен $x^2 3x + 12$ стабилен для бесконечного числа натуральных M.